Answers of homework Exercises Module FIR: Finite Impulse Response

Note:

• The symbol [P] in the margin of an exercise denotes there is a pencast available.

Exercise 1

Exercise 2

a)

b)

$$y[n] = 7x[n] - 2x[n-1] + 3x[n-2] - 3x[n-3]$$

[P1] c) y[n] = 2x[n-1] + 4x[n-2] $x[n] \longrightarrow T \longrightarrow T$ $2 \longrightarrow 4 \longrightarrow \times$

Exercise 3

y[n]

+

Exercise 4

a)

$$\begin{array}{c} y[n] \\ 1 \\ 1 \\ -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$$

b)

$$y[n] = \begin{cases} 0 & n < 0\\ \frac{1}{L}(n+1) & 0 \le n \le L-1\\ 1 & n > L-1 \end{cases}$$

Exercise 5

a.
$$b_0 = 1, b_1 = 2, b_2 = 3, b_3 = 4, b_4 = 5$$
 and $b_n = 0$ for $n < 0$ and $n > 4$.
b. $h[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3] + 5\delta[n-4]$

c.

$$y[n] = \delta[n] + 3\delta[n-1] + 6\delta[n-2] + 10\delta[n-3] + 15u[n-4]$$

Exercise 7

 $\mathbf{a}.$

[P2]

$$A_1 = A_2 = 4$$
; $\theta_1 = -\theta_2 = \theta_x = \frac{\pi}{6}$; $\phi_1 = -\phi_2 = -\frac{\pi}{6}$

b. Thus A = 8, $\theta_y = \theta_x = \frac{\pi}{6}$ and $\phi = -\frac{\pi}{6}$. The output frequency θ_y is equal to the input frequency θ_x .

Exercise 8

	Linear	Time-Invariant	Causal
a	Yes	Yes	No
b	No	Yes	No
с	No	Yes	Yes
d	Yes	No	Yes
e	Yes	Yes	Yes

[8b=P3]

Exercise 9 L = 3 and $\{b_0, b_1, b_2, b_3\} = \{0, 1, 2, 3\}$, while all other coefficients are equal to zero. Exercise 10

$$x[n]$$
 \xrightarrow{T} $y[n] = x[n] - x[n-1]$

Exercise 11

We can set up a linear set of 3 equations with two unknown b_0 and b_1 :

$$b_0 = 1$$

$$b_0 + b_1 = 0$$

$$b_1 = 0$$

which leads to a contradiction. Thus we can not make such an FIR.

Exercise 12 $y[n] = \delta[n-1] + \delta[n-3] - \delta[n-4] - \delta[n-6]$ Exercise 13

a.
$$v[n] = x[n] - x[n-1]$$

b. $h_2[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$
 $h_1[n]$
 $x[n]$
 $x[n]$
 T
 $-1 \rightarrow \bigotimes$
 $v[n]$
 $1 \rightarrow \bigotimes$
 $1 \rightarrow \odot$
 $1 \rightarrow \bigcirc$
 $1 \rightarrow \odot$
 $1 \rightarrow \odot$
 $1 \rightarrow \odot$
 1

The cascaded system has 4 delays and 5 multiplications.

d.

$$h[n] = \frac{1}{4}\delta[n] - \frac{1}{4}\delta[n-4]$$

e. A signal flow graph of the combined system is given in the figure.

This realization contains 4 delays and two multipliers.

Exercise 14

a.

$$h[n] = \delta[n] - \delta[n - 10]$$

b. y[n] = x[n] - x[n - 10].

Exercise 15

Filter $h_1[n]$ has a 'low pass' character, since it passes low frequencies and it attenuates high frequencies.

Filter $h_2[n]$ has a 'high pass' character, since it passes high frequencies and it attenuates low frequencies.