Exercises

Module Complex Numbers And Phasors

Notes:

- Only the answers are available.
- The symbol [P] in the margin of an exercise denotes there is a pencast available.

Exercise 1

Fig.1 shows a plot of a sinusoidal signal. From the plot, determine the values for the amplitude A, phase φ , and frequency ω needed in the representation:

$$x(t) = A\cos(\omega t + \varphi).$$

Give the answer as numerical values, *including the units* where applicable.

Figure 1: Sinusoidal signal

Exercise 2

You can derive the real $\Re e\{\cdot\}$ and imaginary part $\Im m\{\cdot\}$ of complex exponentials for all angles that are multiples of $\pi/4$ and $\pi/6$ without a calculator if you learn only a few specific values by heart.

Figure 2: Unit circle in complex plane

- a. Try to invent a simple trick to remember the values for $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$ when $\theta = \frac{\pi}{3}, \frac{\pi}{4}$ or $\frac{\pi}{6}$?
 - b. From Fig.2, it follows that $e^{j\frac{\pi}{6}} = \frac{1}{2}\sqrt{3} + j\frac{1}{2}$. With this knowledge, can you determine $\Re e\{e^{j\frac{2\pi}{3}}\}$ and $\Im m\{e^{j\frac{2\pi}{3}}\}$
 - c. Determine $\Im m\{e^{j\frac{\pi}{4}}\}\$ and with this and previous answers try to fill all missing numbers of Fig.2.

Exercise 3

Convert the following complex numbers to polar form $z = re^{j\theta}$:

a.
$$z = 0 + 2j$$

b. $z = -\frac{3}{2} - \frac{\sqrt{3}}{2}j$

Exercise 4

Convert the following complex numbers to Cartesian form (z = x + jy).

a.
$$z = \sqrt{2}e^{j\frac{3\pi}{4}}$$

b. $z = 3e^{-j\frac{\pi}{2}}$

Exercise 5

Given the complex numbers z_1 and z_2 , derive z_3 for each of the following cases:

a.
$$z_1 = 3 + 4j$$
, $z_2 = e^{j\frac{\pi}{6}}$, $z_3 = z_1 + z_2$.
b. $z_1 = \sqrt{8}e^{j\frac{3\pi}{4}}$, $z_2 = -2 - 2j$, $z_3 = z_1 - z_2$.
c. $z_1 = -3j$, $z_2 = 2e^{-j\frac{3\pi}{2}}$, $z_3 = \frac{z_1}{z_2}$.

[P2]

Exercise 6

Evaluate the Cartesian expression of the following complex numbers.

a.
$$z = 2j(j + \frac{1}{j})$$

b. $z = \left(\frac{\sqrt{2}}{2}(1+j)\right)^{1003}$
c. $z = \frac{j^{-1}-j^{-2}}{j^{-3}+j^{-4}}$

[P3]

Exercise 7

Simplify the following complex-valued expressions.

- a. For z = -5 + 13j, evaluate $z \cdot z^* = |z|^2$.
- b. For z = -2 + 5j, evaluate $\Re e\{z \cdot e^{-j\frac{\pi}{2}}\}$.
- c. For $z = je^{-j\frac{\pi}{3}}$, evaluate $\Im m\{z\}$.

Exercise 8

Determine the complex roots of the following equations:

a.
$$z^2 + 36 = 0$$

b. $z^2 + 8z + 20 = 0$

[P4]

Exercise 9 Define x(t) as $x(t) = 2\cos(300\pi t + \frac{3\pi}{4}) + 2\sqrt{2}\cos(300\pi (t + 0.005))$. Use phasor addition to express x(t) in the form $x(t) = A\cos(\omega t + \varphi)$ by finding the numerical values of A and φ , as well as ω .

Exercise 10

Solve the following equations for r and θ

$$-3 + 2\mathbf{j} - r\mathbf{e}^{\mathbf{j}\pi} + 4\mathbf{e}^{-\mathbf{j}\theta} = 0$$

Make sure to provide all possible solutions.

Exercise 11

Obtain all possible real-valued solutions for M and ψ that satisfy the following equation.

$$5\cos(\omega t) = M\cos\left(\omega t - \frac{\pi}{6}\right) + 5\cos\left(\omega t + \psi\right).$$