Properties of the Z-transform

Screencast video [⯈]



This section first describes the main properties of the ZT. Finally, the so called one-sides ZT will be introduce, which is useful for solving Difference Equations with initial conditions.

Assume the ZT of the sequences $x[n]$ and $y[n]$ are given by $X(z)$ and $Y(z)$ and their ROC by $R_x$ and $R_y$ respectively.

$$ \begin{eqnarray*} x[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } X(z) \text{ with ROC } R_x & \quad\text{and} \quad& y[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } Y(z) \text{ with ROC } R_y \end{eqnarray*} $$



Property: Linearity

The ZT, as the FTD, is a linear operation:

$$ \boxed{w[n] = \alpha x[n] + \beta y[n] \quad \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \quad W(z) = \alpha X(z) + \beta Y(z) \text{ with ROC } R_w=R_x \cap R_y} $$

The resulting ROC $R_w$ of the sequence $w[n]$ will include the intersection of $R_x$ and $R_y$. However the ROC $R_w$ may be larger.

Example


Compute the ROC of $w[n]=x[n]-y[n]$, with $x[n]=u[n]$ and $y[n]=u[n-1]$.
Both ROC's $X(z)$ and $Y(z)$ are all values of $z$ outside the circle with radius 1. However, the ZT of $w[n]=x[n]-y[n]=\delta[n]$ is the entire $z$-plane.



Property: Shifting

Shifting a sequence, which can be delaying or advancing, multiplies the ZT by a power of $z$:

$$ \boxed{x[n-n_0] \quad \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \quad z^{-n_0} X(z) \text{ with ROC } R_x} $$

Because shifting a sequence does not affect its absolute sumability, shifting does not change the ROC. Therefor, the ZT of $x[n]$ and $x[n-n_0]$ have the same ROC, with the possible exception of adding or deleting the points $z=0$ and $z=\infty$.



Property: Time reversal

The ZT of the time reversed sequence $x[-n]$ is given by $X(z^{-1}$.

$$ \boxed{x[-n] \quad \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \quad X(z^{-1}) \text{ with ROC } 1/R_x} $$

In case the ROC $R_x$ is given by the annulus in between $r_{-}$ and $r_{+}$, the ROC of the time reversed sequence is given by the annulus in between $\frac{1}{r_{+}}$ and $\frac{1}{r_{-}}$, which is denoted by $1/R_x$.



Property: Multiply by $a^n$

$$ \boxed{a^n x[n] \quad \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \quad X(a^{-1} z) \text{ with ROC } R_y= |a|R_x} $$

The proof of this property is as follows: If a sequence $x[n]$ is multiplied by a complex exponential $a^n$ the resulting ZT $Y(z)$ can be obtained by first combining the parameter $a^{-1}$ and the variable $z$ resulting in a scaled version of $X(z)$:

$$ \begin{eqnarray*} y[n] = a^n x[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } &Y(z)& = \sum_{n=-\infty}^{\infty} a^n x[n] z^{-n} =\sum_{n=-\infty}^{\infty} x[n] (a^{-1} \cdot z)^{-n}\newline & & = X(a^{-1} z) \quad\text{ with ROC } R_y= |a|R_x \end{eqnarray*} $$

The resulting ROC is also scaled by the parameter $a$.

Example


The ZT and ROC of the unit step function $x[n]=u[n]$ is as follows: $$ \begin{eqnarray*} x[n]=u[n] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& X(z)= \sum_{n=0}^{\infty} z^{-n} \overset{{\color{red}{|z|>1}}}{=} \frac{1}{1- z^{-1}} \hspace{2mm} \text{ } {\color{red}{{R_x: |z|>1}}} \end{eqnarray*} $$ Calculate the ZT and its ROC of the scaled version $y[n]=a^n u[n]$ of the unit step function.
Evaluating the ZT of the scaled version $y[n]$ via the property leads to the following complex function $Y(z)$ from which the ROC is outside a circle with radius $a$. \begin{eqnarray*} y[n] = a^n x[n] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& Y(z) = X(a^{-1} z ) = \frac{1}{1- (a^{-1} z)^{-1}} \\ &&= \frac{1}{1- a z^{-1}} \text{ } {\color{red}{R_y: |z|>|a|}} \end{eqnarray*} Verifying this result by applying the ZT to the sequence $y[n]=a^n u[n]$ leads indeed to the same result $Y(z)$ with the same ROC as follows from the following equations: \begin{eqnarray*} \text{via ZT of } y[n] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& Y(z) =\sum_{n=0}^{\infty} a^n z^{-n} \overset{{\color{red}|z|>|a|}}{=} \frac{1}{1- a z^{-1}} \text{ } {\color{red}{R_y: |z|>|a|}} \end{eqnarray*} Finally, as a special case note that if $x[n]$ is multiplied by a complex exponent $e^{jn \theta_0}$: $$ e^{jn \theta_0} x[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } X(e^{-j\theta_0} z) $$ which corresponds to a rotation of the $z$-plane



Property: Convolution Theorem

Perhaps the most important ZT property is the convolution theorem, which states that convolution in time domain is mapped to multiplication in $z$ domain.

$$ \boxed{x[n] \star y[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } X(z) \cdot Y(z) \hspace{3mm} \text{with } R_w=R_x \cap R_y} $$

The proof of this property is shown in the following steps: First write out the convolution sum and transform to the $z$-domain.

$$ \begin{eqnarray*} w[n]= x[n] \ast y[n] & \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ & W(z) = \sum_{n=-\infty}^{\infty}\left ( \sum_{p=-\infty}^{\infty} x[p] y[n-p] \right ) z^{-n} \end{eqnarray*} $$

In the next step change the order of the two summations and then add an extra exponent $z^{-p}$ in the first summation which has to be compensated this in the second summation:

$$ \begin{eqnarray*} W(z) &=& \sum_{p=-\infty}^{\infty} x[p] \left\{ \sum_{n=-\infty}^{\infty} y[n-p] z^{-n} \right\} \newline &=& \sum_{p=-\infty}^{\infty} x[p] z^{-p} \cdot \left\{ \sum_{n=-\infty}^{\infty} y[n-p] z^{-(n-p)} \right\} \end{eqnarray*} $$

The first summation is the ZT of the sequence $x[n]$ and the second summation between large brackets is the ZT of the sequence $y[n]$ , which finalizes the proof.

$$ \begin{eqnarray*} W(z)&=& X(z) \cdot Y(z) \hspace{3mm} \text{with } R_w=R_x \cap R_y \end{eqnarray*} $$

The ROC of the result $W(z)$ of the convolution property includes the intersection of the ROC's of $X(z)$ and $Y(z)$. However, the ROC $R_w$ may be larger, if there is a pole-zero cancellation in the product $X(z) \cdot Y(z)$.

Example


Calculate the convolution result of the two finite length sequences: $$ \begin{eqnarray*} x[n]= \delta[n] + 2 \delta[n-1] & \text{and} & y[n]=\delta[n] + \delta[n-1] \end{eqnarray*} $$ Calculate first the result via the convolution procedure and verify this result via the convolution property of the ZT.
Both $x$ and $y$ are finite length sequences and the convolution result $w[n]$ is a finite length sequence which consists of 3 delta pulse with coefficients ${\bf 1}$, ${\color{red}{3}}$ and ${\color{green}{2}}$ respectively. $$ \begin{eqnarray*} w[n]=x[n] \ast y[n] &=&= {\bf 1} \delta[n] + {\color{red}{{\bf 3}}} \delta[n-1] + {\color{green}{{\bf 2}}} \delta[n-3] \end{eqnarray*} $$ The ZT of the two sequences is as follows: $$ \begin{eqnarray*} x[n]= \delta[n] + 2 \delta[n-1] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& X(z) = 1 + 2z^{-1}\newline y[n]=\delta[n] + \delta[n-1] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& Y(z)=1 + z^{-1} \end{eqnarray*} $$ Multiplying these two polynomials results in a finite length polynomial with coefficients ${\bf 1}$, ${\color{red}{3}}$ and ${\color{green}{2}}$, which is indeed the ZT of the convolution result $w[n]$. $$ \begin{eqnarray*} W(z)=X(z) \cdot Y(z) &=& = (1 + 2z^{-1}) \cdot (1 + z^{-1}) = {\bf 1} + {\color{red}{\bf 3}} z^{-1} + {\color{green}{\bf 2}} z^{-2} \end{eqnarray*} $$ Finally the ROC of the result $W(z)$ of the convolution theorem includes the intersection of the ROC's of $X(z)$ and $Y(z)$.

Example


Calculate the ROC of $x[n] \star y[n]$ with $x[n]= a^n u[n]$ and $y[n]=\delta[n] - a \delta[n-1]$.
$$ \begin{eqnarray*} x[n]= a^n u[n] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& X(z) = \frac{1}{1 - a z^{-1}} \hspace{3mm} \text{with }R_x \text{ : }|z| > |a|\\ y[n]=\delta[n] - a \delta[n-1] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ& Y(z) = 1 - a z^{-1} \hspace{3mm} \text{with }R_y \text{ : }|z| > 0 \end{eqnarray*} $$ In this example the ZT $X(z)$ of the infinite length exponential decaying sequence $x[n]$ has one pole at $z=a$ and the ROC contains all complex variables $z$ outside a circle with radius $a$. The ZT $Y(z)$ of the finite length sequence $y[n]$ has one zero at $z=a$ and the ROC contains all complex variables $z$ except $z=0$. $$ \begin{eqnarray*} W(z) = X(z) \cdot Y(z) = \frac{1}{1 - a z^{-1}} \cdot (1 - a z^{-1} ) = 1 \hspace{3mm} \text{with }R_w \text{ : all } z \end{eqnarray*} $$ The ZT of the convolution of $x[n]$ with $y[n]$ is $W(z)=X(z) \cdot Y(z)$, which, due to the pole-zero cancellation, has a ROC that is the entire $z$-plane.



Property: Conjugation

$$ \boxed{x^\ast[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } X^\ast(z^\ast) \text{ ; } R_x} $$ As a corollary, note that if $x[n]$ is real-valued, $y[n]=x^\ast[n]=x[n]$, then $X(z)=X^\ast(z^\ast)$ is such as case.

The proof of the conjugation property goes as follows:

The ZT of the complex conjugate of the sequence $x[n]$ can be rewritten by taking the complex conjugation operation outside the brackets and interchange in the exponents of the variable $z$ which leads to the final result. $$ \begin{eqnarray*} y[n] = x^\ast[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } & Y(z)& = \sum_{n=-\infty}^{\infty} x^\ast[n] z^{-n} = \left ( \sum_{n=-\infty}^{\infty} x[n] {z^{-n}}^{\ast} \right )^\ast\newline &&= \left ( \sum_{n=-\infty}^{\infty} x[n] {z^{\ast}}^{-n} \right )^\ast = X^\ast(z^\ast) \text{ ; } R_y=R_x \end{eqnarray*} $$ The ROC is not influenced by the complex operation.

Example


Calculate the ZT of the sequence $\left ( e^{-j\theta_0}\right )^n u[n]$.
From the table with ZT-pairs it follows that $a^n u[n] \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ 1/(1-az^{-1})$ $\rightarrow$: $$ \begin{eqnarray*} x[n]= \left ( e^{j\theta_0}\right )^n u[n] & \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ & X(z) = \frac{1}{1 - e^{j\theta_0} z^{-1} } \end{eqnarray*} $$ With $y[n]=x^\ast[n]$ ,we can find the result $Y(z)$ by using the conjugation property as follows: $$ \begin{eqnarray*} Y(z)=X^\ast(z^\ast)&=& \left \{ \frac{1}{1 - e^{j\theta_0} (z^\ast)^{-1} } \right \}^\ast =\left \{ \frac{1}{1 - e^{j\theta_0} (z^{-1})^{\ast} } \right \}^\ast \newline &=& \frac{1}{1 - e^{-j\theta_0} z^{-1} } \end{eqnarray*} $$



Property: Derivative

$$ \boxed{n \cdot x[n] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } -z \frac{\text{d}}{\text{d} z} X(z) \text{ ; } R_x} $$

The proof of this property goes as follows:

The ZT of the sequence $n \cdot x[n]$ can be pre-multiplied with $z$, which has to be compensated inside the summation: $$ \begin{eqnarray*} y[n] = n \cdot x[n] &\circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ & Y(z)=\sum_{n=-\infty}^{\infty} n \cdot x[n] z^{-n} =z \sum_{n=-\infty}^{\infty} \left\{ n \cdot x[n] z^{-n-1} \right\} \end{eqnarray*} $$ The function in between brackets can be rewritten as a differentiation, which can be taken outside the summation, because of linearity, which leads to the final result: $$ \begin{eqnarray*} Y(z)& =& =z \sum_{n=-\infty}^{\infty}\left\{ -\frac{\text{d}}{\text{d} z} x[n] z^{-n} \right\} =-z \frac{\text{d}}{\text{d} z} \left( \sum_{n=-\infty}^{\infty}x[n] z^{-n} \right) = -z \frac{\text{d}}{\text{d} z} X(z) \end{eqnarray*} $$ The ROC is not influenced.

Example


Calculate the ZT of $y[n] = n a^n u[n]$.
The sequence $y[n]$ is $n$ times the exponential decaying sequence $a^n u[n]$. From the derivative property it follows that we can find the ZT $Y(z)$ of $y[n]$ as follows: $$ \begin{eqnarray*} Y(z) & =& -z \frac{\text{d}}{\text{d} z} \left( \frac{1}{1-a z^{-1}}\right) = -z \left\{ \frac{- a z^{-2}}{(1-a z^{-1})^2} \right\} = \frac{a z^{-1}}{(1-a z^{-1})^2} \end{eqnarray*} $$

Property: Initial value

When the sequence $x[n]=0$ for $n<0$, the initial value $x[0]$ may be found from the ZT $X(z)$ by taking the limit for $z$ to infinity: $$ \boxed{x[0] = \lim_{z \rightarrow \infty} \left \{ X(z) \right \}} $$ The proof goes as follows with $x[n]=0$ for $n<0$: $$ \begin{eqnarray*} \lim_{z \rightarrow \infty} \left\{ X(z) \right\} &=& \lim_{z \rightarrow \infty} \left\{ \sum_{n=-\infty}^{\infty} x[n] z^{-n} \right\} \newline &=&\lim_{z \rightarrow \infty} \left\{ \cdots x[-1] z + x[0] + x[1] z^{-1} + \cdots \right\}\newline &=& \lim_{z \rightarrow \infty} \left\{ 0 + x[0] + x[1] z^{-1} + \cdots \right\} =x[0] \end{eqnarray*} $$ This initial value property can be shown in the following example:

Example


Calculate the initial value $x[0]$ of the sequence $x[n] = a^n u[n]$ via the initial value property of the ZT.
The given ZT $X(z)$ is related to the exponential decaying function $x[n]$ from which it is clear that the initial value $x[0]=1$. $$ \begin{eqnarray*} X(z) = \frac{1}{1-az^{-1}} & \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ & x[n] = a^n u[n] \quad \rightarrow \quad x[0]=1 \end{eqnarray*} $$ The same result can be found via the initial value property as follows: $$ \lim_{z \rightarrow \infty} \left\{ X(z) \right\} =\lim_{z \rightarrow \infty} \left\{ \frac{1}{1-az^{-1}} \right\} = 1 $$

One sided Z-Transform

The ZT $X(z)$ of the sequence $x[n]$, as discussed before, is the two-sided ZT. The one-sided ZT $\tilde{X}(z)$ is defined by the given equation in which the summation index $n$ does not start from $n=-\infty$ but from $n=0$. \begin{equation*} \boxed{\tilde{X}(z)=\sum_{{\color{red}{n=0}}}^{\infty} x[n] z^{-n}} \end{equation*} Most of the properties of the one-sided ZT are the same as the properties of the two-sided ZT. One that is different, however, is the shift property. Specifically, if the sequence $x[n]$ has a one-sided ZT $\tilde{X}(z)$, the difference of the one-sided ZT of the shifted sequence $x[n-k]$ is represented in red in the following shift property of the one-sided ZT: $$ \boxed{x[n-k] \text{ } \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } {\color{red}{\sum_{p=-k}^{-1} x[p] z^{-(p+k)}}} + z^{-k} \cdot \tilde{X}(z)} $$ For the proof of this property we apply the one-sided ZT to the shifted sequence $x[n-k]$ and then substitute a new variable $p$ for $n-k$, which finalizes the proof: $$ \begin{eqnarray*} x[n-k] & \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ & \sum_{n=0}^{\infty} x[n-k] z^{-n} \overset{p=n-k}{=\!=\!=\!=} \sum_{p=-k}^{\infty} x[p] z^{-(p+k)} \newline & & = {\color{red}{\sum_{p=-k}^{-1} x[p] z^{-(p+k)}}} + z^{-k} \cdot \left( \sum_{p=0}^{\infty} x[p] z^{-p} \right) \end{eqnarray*} $$ It is this shifting property that makes the one-sided ZT useful for solving Difference Equations with initial conditions, as can be shown by the following example.

Example


Consider the linear constant Difference Equation $y[n]=\frac{1}{4} y[n-2] + x[n]$. Find the solution for this equation assuming $x[n]=\delta[n-1]$. First use the ZT for the case $y[n]=0$ for $n < 0$ and then use the one sided ZT shift property for the case $y[-2]=y[-1]=1$.
$\bullet \underline{{\color{blue}{\text{Case $y[n]=0$ for $n < 0$}}}} \rightarrow \textbf{ Use ZT}$:

In case the initial conditions are zero, we can use the usual ZT. Together with the ZT of $x[n]=\delta[n-1]$ this leads to the given fraction. This fraction can be expanded as a sum of two terms which are related to the given sum of two exponential decaying sequences. $$ \begin{eqnarray*} Y(z) &=& \frac{1}{4} z^{-2} \cdot Y(z) + X(z) \hspace{5mm} \text{ with} \hspace{5mm} X(z)=z^{-1} \quad \rightarrow \end{eqnarray*} $$ $$ \begin{eqnarray*} Y(z)= \frac{z^{-1}}{1 - \frac{1}{4} z^{-2}} = \frac{1}{1-\frac{1}{2} z^{-1}} - \frac{1}{1+\frac{1}{2} z^{-1}} &&\newline \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ \text{ } y[n]= \left (\left ( \frac{1}{2} \right )^n - \left ( -\frac{1}{2} \right )^n \right ) \cdot u[n] && \end{eqnarray*} $$

$\bullet \underline{{\color{blue}{\text{Case $y[-2]=y[-1]=1$}}}} \rightarrow \textbf{ Use one-sided ZT:}$

In case the initial conditions are nonzero, for example $y[-2]=y[-1]=1$ we have to use the one-sided ZT to solve the Difference Equation. The one-sided ZT $\tilde{X}(z)$ of $x[n]=\delta[n-1]$ is the same as the ZT $X(z)$ which is equal to $Z^{-1}$. Using this together with the shift property of the one-sided ZT results in the given fraction, which can be expanded as a sum of two terms which are related to the given sum of two weighted exponential decaying sequences. $$ \begin{eqnarray*} \tilde{Y}(z) & =& \frac{1}{4}\cdot \left ( {\color{red}y[-2] + y[-1] z^{-1}} + z^{-2} \cdot \tilde{Y}(z) \right ) + \tilde{X}(z) \end{eqnarray*} $$ $$ \begin{eqnarray*} \rightarrow \hspace{2mm} \tilde{Y}(z) &=& \frac{\frac{1}{4} + \frac{5}{4} z^{-1}}{1 - \frac{1}{4} z^{-2}}= \frac{\frac{11}{8}}{1-\frac{1}{2} z^{-1}} - \frac{\frac{9}{8}}{1+\frac{1}{2} z^{-1}} \newline \tilde{Y}(z)& \circ \hspace{-1.7mm} - \hspace{-1.7mm} \circ & y[n]= \left ( {\color{red}{\frac{11}{8}}} \left( \frac{1}{2} \right )^n - {\color{red}{\frac{9}{8}}} \left ( -\frac{1}{2} \right )^n \right ) \cdot u[n] \end{eqnarray*} $$ The influence of the initial conditions is reflected by the two weights denoted in red.